Gelfand–Kirillov dimension of some simple unitarizable modules

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

dedekind modules and dimension of modules

در این پایان نامه، در ابتدا برای مدول ها روی دامنه های پروفر شرایط معادل به دست آورده ایم و خواصی از ددکیند مدول ها روی دامنه های پروفر مشخص کرده ایم. در ادامه برای ددکیند مدول های با تولید متناهی روی حلقه های به طور صحیح بسته شرایط معادل به دست آورده ایم و ددکیند مدول های ضربی را مشخص کرده ایم. گزاره هایی در مورد بعد ددکیند مدول ها بیان کرده ایم. در پایان، قضایای lying over و going down را برا...

15 صفحه اول

Centralizers in Domains of Gelfandkirillov Dimension 2

Given an affine domain of Gelfand–Kirillov dimension 2 over an algebraically closed field, it is shown that the centralizer of any non-scalar element of this domain is a commutative domain of Gelfand–Kirillov dimension 1 whenever the domain is not polynomial identity. It is shown that the maximal subfields of the quotient division ring of a finitely graded Goldie algebra of Gelfand– Kirillov di...

متن کامل

Copresented Dimension of Modules

 In this paper, a new homological dimension of modules, copresented dimension, is defined. We study some basic properties of this homological dimension. Some ring extensions are considered, too. For instance, we prove that if $Sgeq R$ is a finite normalizing extension and $S_R$ is a projective module, then for each right $S$-module $M_S$, the copresented dimension of $M_S$ does not exceed the c...

متن کامل

Unitarizable weight modules over generalized Weyl algebras

We define a notion of unitarizability for weight modules over a generalized Weyl algebra (of rank one, with commutative coeffiecient ring R), which is assumed to carry an involution of the form X∗ = Y , R∗ ⊆ R. We prove that a weight module V is unitarizable iff it is isomorphic to its finitistic dual V . Using the classification of weight modules by Drozd, Guzner and Ovsienko, we obtain necess...

متن کامل

Gorenstein Dimension of Modules

R ring (always commutative and Noetherian) (R,m,k) local ring with maximal ideal m and k = R/m L,M,N, . . . R-modules (always finitely generated) M HomR(M,R), the dual of M D(M) the Auslander dual of M (Definition 2) σM : M wM∗∗ the natural evaluation map; KM = Ker(σM ), CM = Coker(σM ) G-dimR(M),G-dim(M) Gorenstein dimension of M (Definition 16) G-dim(M) <loc ∞ M has locally finite Gorenstein ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2018

ISSN: 0021-8693

DOI: 10.1016/j.jalgebra.2018.08.007